527 The United States Cost of Corrosion Study

of SERVICE

Cost of Corrosion - Acknowledgement

Amendment to the "Transportation Equity Act for the 21st Century (TEA-21)" in 1998 led to this project

Cost of Corrosion - Acknowledgement

- Project Funded By:
 - Federal Highway Administration (DOT)
 - Office of Infrastructure Research and Development
 - Project Manager: Y. Paul Virmani, Ph.D.
- In Cooperation With:
 - NACE International The Corrosion Society
 - Disseminating study finding raise awareness

Cost of Corrosion – Study Contractor

- CC Technologies
 - Gerhardus H. Koch, Ph.D.
 - Neil G. Thompson, Ph.D.
 - Michael P.H. Brongers
 - Joe H. Payer, Ph.D., Case Western Reserve University

Cost of Corrosion – Presentation Outline

- Study Goals
- Previous Studies
- Current Study
 - Method 1 Corrosion Control Methods & Services
 - Method 2 Industry Sector Analysis
- Highlights of Selected Sectors
- Extrapolation to Total Corrosion Cost
- Preventative Strategies

Cost of Corrosion – Study Goals

- Determines the cost of corrosion control methods and services
- Determines the cost of corrosion for specific industry sectors
- Extrapolate individual sector costs to a national total corrosion cost
- Assess barriers to progress and effective implementation
- Develop strategies for realizing cost savings

Cost of Corrosion – Previous Studies

- 1950 H.H. Uhlig US Study: 2.1% of GNP
- 1970 T.P. Hoar UK Study: 3.5% of GNP
- 1974 Japan Study: 1.2% of GNP
- 1975 Battelle/NBS U.S. Study: 4.5% of GNP

Cost of Corrosion – Method 1 – Methods & Services

- All costs are direct corrosion costs
- Disadvantage: many costs are missed
 - Costs of labor attributed to corrosion management activities
 - Cost of the equipment required because of corrosion-related activities
 - Loss of revenue due to disruption in supply of product
 - Cost of loss of reliability

Cost of Corrosion – Method 1 – Methods & Services

Protective Coatings		B\$	108.6
Corrosion Resistant Alloys		B\$	7.7
Corrosion Inhibitors		B\$	1.1
Engineering Plastics/Polymers		B\$	1.8
Cathodic & Anodic Protection		B\$	1.0
Corrosion Control Services		B\$	1.2
Research & Development		B\$	-
Education & Training		B\$	-
	TOTAL:	B\$	121.41

Cost of Corrosion – Method 2 – Industry Sector Analysis

- For each sector, details of analysis are different
 - Government Reports
 - Publicly Available Documents
 - Industry Experts
 - U.S. Department of Commerce Bureau Census
 - Existing Industrial Surveys
 - Trade Organizations
 - Industry Groups
 - Individual Companies

Cost of Corrosion – Method 2 – Industry Sector Analysis

• 26 Sectors in 5 Categories

- Infrastructure
- Utilities
- Transportation
- Production & Manufacturing
- Government

Cost of Corrosion – Method 2 – Industry Sector Analysis

Cost of Corrosion – Category: Infrastructure

Highway Bridges		B\$	8.3
Gas & Liquid Transmission Pipelines		B\$	7.0
Waterways & Ports		В\$	0.3
Hazardous Materials Storage		В\$	7.0
Airports		B\$	-
Railroads		B\$	-
	TOTAL:	B\$	22.6

Cost of Corrosion – Category: Utilities

Gas Distribution		B\$	5.0
Drinking Water and Sewer Systems		B\$	36.0
Electrical Utilities		B\$	6.9
Telecommunications		B\$	-
	TOTAL:	B\$	47.9

Cost of Corrosion – Category: Transportation

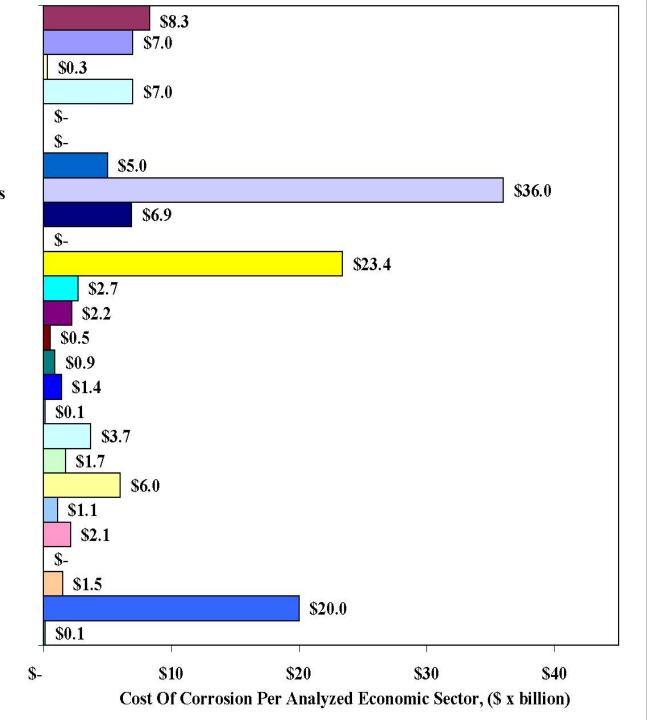
Motor Vehicles		B\$	23.4
Ships		B\$	2.7
Aircraft		В\$	2.2
Railroad Cars		B\$	0.5
Hazardous Materials Transport		B\$	0.9
	TOTAL:	B\$	29.7

Cost of Corrosion – Category: Production & Manufacturing

Oil & Gas Exploration & Production	B\$	1.4
Mining	B\$	0.1
Petroleum Refining	B\$	3.7
Chemical, Petrochemical, & Pharmaceutical	B\$	1.7
Pulp & Paper	B\$	6.0
Agricultural Production	B\$	1.1
Food Processing	B\$	1.1
Electronics	B\$	-
Home Appliances	B\$	1.5
TOTAL	_ B\$	17.6

Government

Defense	B\$	20.0
Nuclear Waste Storage	B\$	0.1
	TOTAL B\$	20.1



Cost of Corrosion – Summary of Sector Analyses

Infrastructure		B\$	22.6
Utilities		B\$	47.9
Transportation		B\$	29.7
Production & Manufacturing		B\$	17.6
Government		B\$	20.1
	TOTAL	B\$	137.9

Highway Bridges **Gas and Liquid Transm. Pipelines** □ Waterways and Ports **Hazardous Materials Storage** ■ Airports Railroads **Gas Distribution** Drinking Water and Sewer Systems Electrical Utilities Telecommunication □ Motor Vehicles **Ships** Aircraft Railroad Cars **Hazardous Materials Transport Oil and Gas Expl.and Production** □ Mining **Petroleum Refining** Chem., Petrochem., Pharm. **Pulp and Paper Agricultural Food Processing Electronics** Home Appliances **Defense** ■ Nuclear Waste Storage

Highlights of Selected Sectors

Highways & Bridges Transmission Pipelines Drinking Water & Sewer Systems Oil & Gas Exploration & Production

of SERVICE

\$276 Billion

The United States Cost of Corrosion Study

Highways & Bridges

\$8.3 Billion Per Year

SIXTY YEARS of SERVICE

\$276 Billion

The United States Cost of Corrosion Study

National Bridge Inventory Database

•Approximately 600,000 bridges in the U.S Half were built between 1950 and 1994

•The materials of construction Concrete, steel, timber, masonry, timber/steel/concrete combinations, & aluminum

•This sector focused on reinforced concrete and steel bridges; they make up the vast majority of highway bridges

Highway Bridges – Trends

•Reported downward trend in the % structurally deficient bridges - decrease from 18 % to 15 % between 1995 to 1999

•However, costs to replace aging bridges increased by 12 % during the same period.

•In addition, there has been a significant increase in the required maintenance of the aging bridges

Sector Summary: Highway Bridges

Replace structurally deficient bridges B\$ 3.	79
Maintenance and capital cost For concrete bridge decks For concrete sub- and superstructures	2.00 2.00
Maintenance painting cost for steel bridges	<u>.5</u>
Total : B\$ 8.	29

Highway Bridges - Findings

Indirect corrosion costs:

•Estimated from life-cycle analysis

•Costs to user due to traffic delays & lost productivity

•More than ten times the direct cost of corrosion

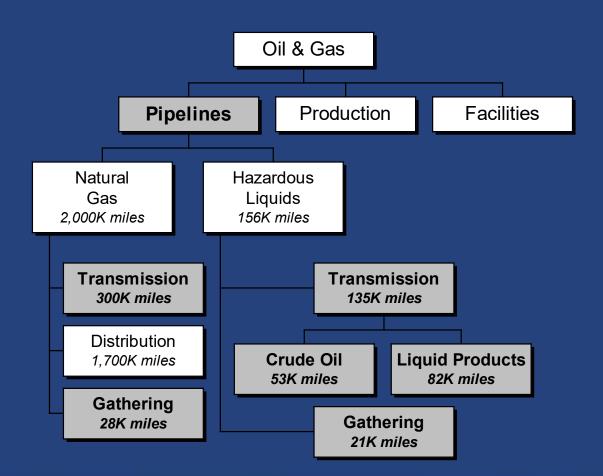
Gas & Liquid Transmission Pipelines

\$7 Billion Per Year

of SERVICE

\$276 Billion

The United States Cost of Corrosion Study


Gas & Liquid Transmission Pipelines

• Over 480,000 Miles of Gas and Liquid Transmission Pipelines

- Gas Transmission
 - Natural Gas Lines 328,000 Miles
- Liquid Transmission Lines
 - Crude Oil Lines 74,000 Miles
 - Liquid Product Lines 82,000 Miles
- 60% of These Lines Are Over 40 Years

Gas & Liquid Transmission Pipelines

Gas & Liquid Transmission Pipelines

• Typical Corrosion Related Costs

- Annual ICCP System Investment \$40 Million
- Annual Sacrificial CP Investment \$9 Million
- Annual O&M Costs \$2.4 Billion \$4.8 Billion

• Certification

- 30% of Companies has personnel dedicated to Corrosion Control
- Regulations require Certification of Corrosion Control Staff
- Annual Cost \$32.4 Million

Sector Summary: Transmission Pipelines

	Low Estimate	High Estimate	Averag	je
	(\$ x M)	(\$ x M)	(\$ x M)	%
Cost of Capital	2,500	2.840	2,670	38
Operations & Maintenance (O&M)	2,420	4,840	3,630	52
Cost of Failures (Non-Related O&M)	471	875	673	10
TOTAL COST DUE TO CORROSION	5,391	8,555	6,973	100

Drinking Water & Sewer Systems

\$36 Billion Per Year

of SERVICE

\$276 Billion

The United States Cost of Corrosion Study

Drinking Water & Sewer Systems

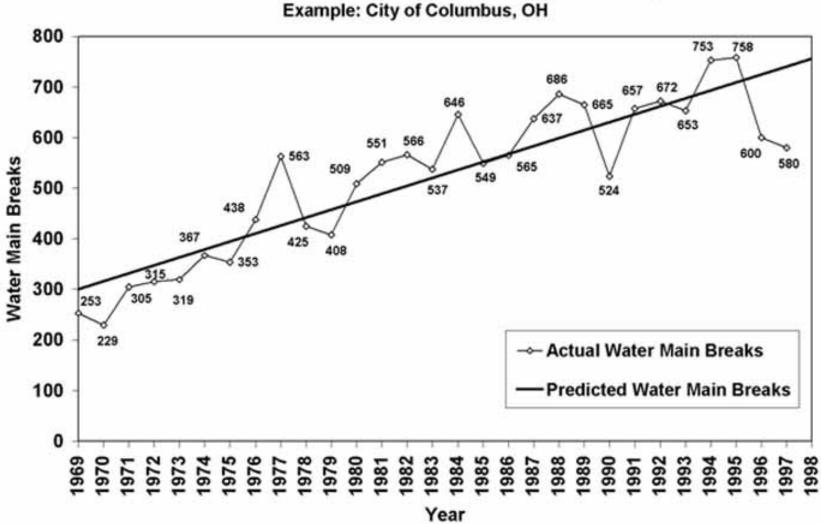
• Two Separate Systems

- Drinking Water
- Sewage Water
- Costs in Operation, Maintenance, Finance, Capital Investments
- Maintenance crews find and repair leaks, but the number of leaks increases with system age.

Drinking Water & Sewer Systems

• System Size

- 550 liters of water consumption per person per day
- 56.7 Billion m³ / year in the U.S.
- 1.4 Million km of municipal water pumping
- A major barrier to progress in corrosion management is the absence of complete and up-to-date information on all water systems.



Operation & Management Costs

• There are only 2 reasons why utilities replace or change water systems:

- Pipes are considered broken,
 - Leaking water
 - Corrosion products in the water
- Capacity too small for the area
- Assume 50% of all operation and maintenance costs are corrosion-related

Annual Number Of Water Main Breaks From 1969 To 1997, Example: City of Columbus, OH

(O)

Frank Starter

the c

Three Reports on Water System Costs

• 1997 EPA: B\$6.9 per year

•Drinking water system maintenance only

•1998 AWWA: B\$16.3 per year

•Drinking water transmission – maintenance only

• 2000 WIN: B\$51 per year for Drinking Water B\$45 per year for Sewer Systems

• Includes Operation, Maintenance, Finance, Capital

Cost of Lost Water

- Nationwide, 15% of treated water is lost
- Loss of revenue: B\$3.0 per year
- More than 90% of lost-water cost is corrosion-related, because of leaking systems
- Underground leaks go unnoticed: Therefore low cost awareness

Sector Summary: Drinking Water & Sewer Systems

• Operation, Maintenance, Finance, Capital		
 Drinking water systems 		B\$19.25
•Sewer systems		B\$13.75
•Cost of Lost water		B\$3.0
	TOTAL	B\$36.0

Oil & Gas Exploration Production

\$1.4 Billion Per Year

of SERVICE

\$276 Billion

The United States Cost of Corrosion Study

Background

- Significant available onshore oil & gas reserved have been explored
- U.S. 1998 Oil Production 3.04 Billion Barrels
- Recoverable Reserves
 - Deep Waters Offshore
 - Remote Arctic Locations
 - Reservoirs with Unconsolidated Sands

Background

• Relative High Costs of Oil & Gas Production in the U.S.

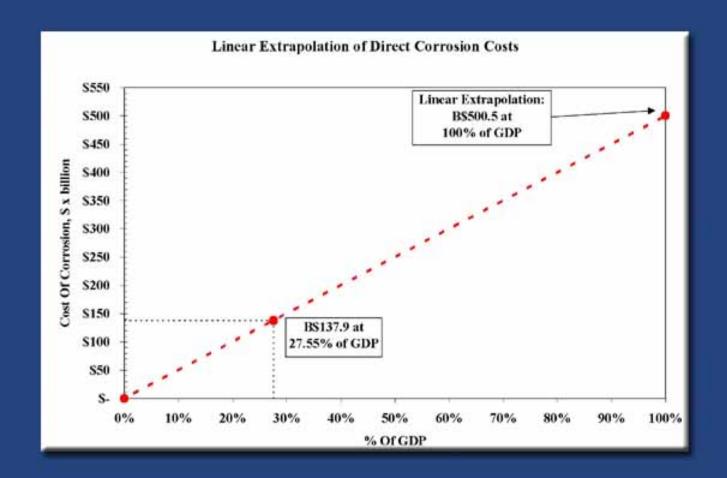
•Maintenance Costs Must be Kept to a Minimum

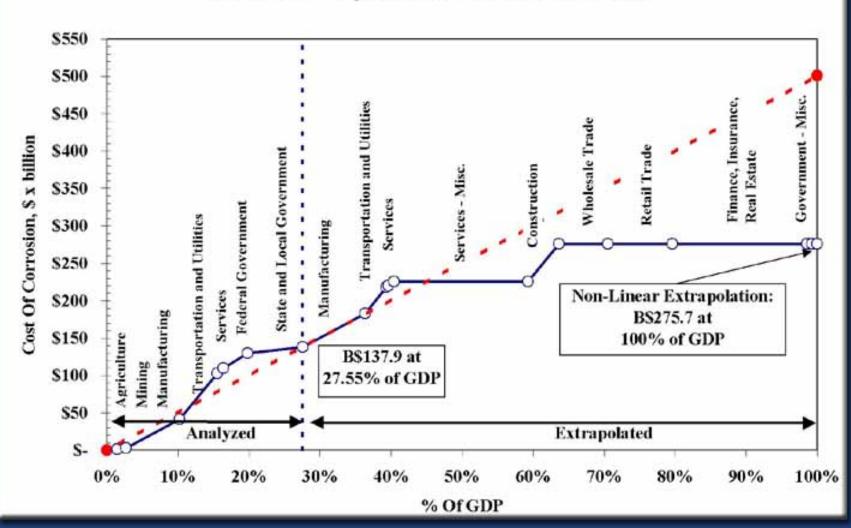
•Emphasis on Controlling Internal Corrosion with Corrosion Inhibitors

Sector Summary: Oil & Gas

• Operation, Maintenance, Finance, Capital		
•Surface Piping & Facility Costs		M\$589
•Downhole Tubing Expenses		M\$463
•Capital Expenses		M\$320
	TOTAL	B\$1.36

How to Extrapolate the <u>Total Cost of Corrosion</u>




of SERVICE

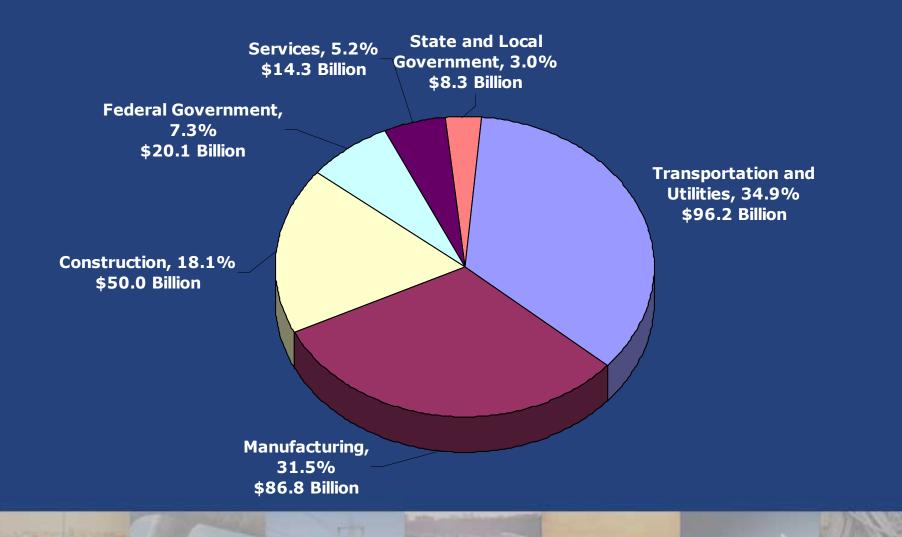
S276 Billion

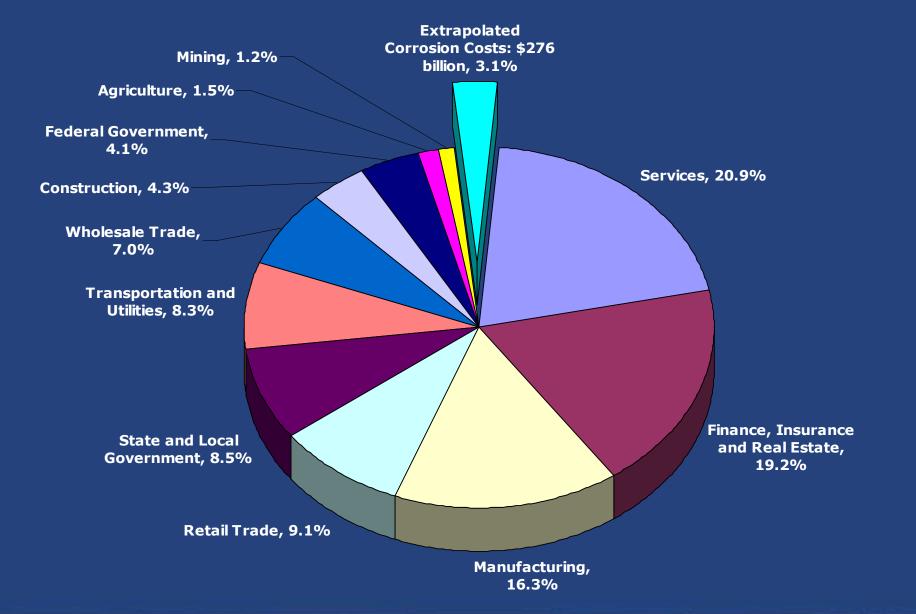
The United States Cost of Corrosion Study

Non-Linear Extrapolation of Direct Corrosion Costs

Total Cost of Corrosion

Estimated Cost	B\$138	
• Extrapolated Cost	B\$276	
Actual Cost	>B\$550	
• Bridges	>5 times	
Electric Utilities	>3 times	




Total Direct Cost of Corrosion in the U.S. B\$276 / year = 3.1% of GDP

Extrapolated Corrosion Costs: \$276 billion, 3.1% of GDP

Non-Technical Preventive Strategies (4)

- Increase awareness of the large corrosion costs and potential savings
- Change the misconception that nothing can be done about corrosion
- Change policies, regulations, standards, and management practices to increase corrosion savings
- Improve education and training of staff

Technical Preventive Strategies (3)

- Advance design practices for better corrosion management
- Advance life prediction and performance assessment methods
- Advance corrosion technology through research, development, and implementation

Further Information

- FHWA RD-01-156 Full Report
- FHWA RD-01-157 Tech Brief
- Contact:
 - •Federal Highway Administration
 - •Y. Paul Virmani (202) 493-3052
- Web Site:
 - http://www.corrosioncost.com

527 The United States Cost of Corrosion Study

of SERVICE

